The problem of a hard wedge sliding against a metal substrate has been studied extensively for its importance in tribo-plasticity and deformation processing. Here we explore the effect of introducing a single, near-surface plastic inhomogeneity (termed as a pseudograin) in a metal substrate using Lagrangian finite element (FE) analysis. The pseudograin is allowed to be softer or harder than the surrounding material. The effects of sliding parameters like the size and location of the pseudograin, friction and indenter geometry are also studied. Interestingly, the introduction of the pseudograin can lead to production of surface folds / self-contacts, and acutely-inclined, near-surface, crack-like features, which cannot be reproduced by homogeneous specimens. In fact, this tribosystem is phenomenologically very rich, despite differing from classical triboplastic systems of Challen, Oxley and Torrance only by way of the inhomogeneity. Despite its simplicity, the model replicates several experimentally observed features of surface folding, and is a minimal model to obtain folding in sliding. The occurrence of surface folds and concomitant residual surface damage points to the important role played by microstructure-related inhomogeneities in determining surface quality in deformation processing operations (e.g. repeated sliding to generate UFG surfaces) and is also a potentially new mode of sliding wear.

This content is only available via PDF.
You do not currently have access to this content.