Bipolar tissue welding is often performed with a set of laparoscopic forceps in a minimal invasive surgery to achieve less bleeding and shorter recovery time. However, problems such as tissue sticking, thermal damage, and joint failure need to be solved before the process can be reliably used in more surgical procedures. In this study, experiments were conducted to examine the effect of process parameters and dynamic impedance for prediction of the size of denatured tissue zone during welding. A weld lobe that defines suitable process conditions was constructed. It is found that tissue denaturation starts from the center of the heated region. Dynamic impedance is strongly affected by the compression level and heating power. The size of denatured tissue zone can be predicted with the heating energy; however, the prediction is strongly dependent on the compression level.

This content is only available via PDF.
You do not currently have access to this content.