3D printing (additive manufacturing) has become a popular method to create three-dimensional objects due to its high efficiency and is easy to operate. 3D printing of continuous fiber reinforced polymers has been a challenge. The fused deposition modeling (FDM) processes for this purpose were proposed and made possible only several years ago. The 3D printed continuous fiber reinforced polymers are able to improve the mechanical properties by leaps and bounds. In this paper, we aim to investigate the possibility of further improve the mechanical properties of 3D printed continuous fiber reinforced polymers by adding nano fillers to the polymer matrix. In experiment, the Kevlar fiber is chosen to be the continuous fiber material, and nylon 6 (PA 6) is chosen to be the polymer matrix material. Carbon nanotubes (CNTs) and graphene nano platelets (GNPs) nanoparticles are first mixed with nylon 6 pellets to make nanocomposites. The nanocomposites are then extruded into filaments for 3D printing. During the 3D printing process, both Kevlar filament and nanocomposite filament are fed through the printing nozzle and deposited on the platform. Tensile specimens are made from pure PA 6 and four types of nanocomposites, namely, 0.1wt% CNT/PA 6, 1wt% CNT/PA 6, 0.1wt% GNP/PA 6, 1wt% GNP/PA 6. By incorporating four layers of Kevlar fiber, which leads to the weight percentage of about 9% for Kevlar fiber in materials, fiber composite tensile specimens are made from Kevlar/PA 6 composite and four fiber reinforced nanocomposites, namely, Kevlar/0.1%CNT/PA 6, Kevlar/1%CNT/PA 6, Kevlar/0.1%GNP/PA 6, and Kevlar/1%GNP/PA 6. The tensile tests reveal that CNTs filled PA 6 nanocomposites show less significant improvements in mechanical properties as compared to the GNP filled PA 6. With only 0.1wt% of GNP, the tensile modulus improves by 101%, and with 1wt% of GNP, the modulus improves by 153%. The results also indicate that although Kevlar fibers dominate the main mechanical properties of the printed composite materials, the existence of GNP nano fillers also provide noticeable contribution to the enhancement of tensile strengths and moduli, while the effect of CNTs is much less pronounced.
Skip Nav Destination
ASME 2018 13th International Manufacturing Science and Engineering Conference
June 18–22, 2018
College Station, Texas, USA
Conference Sponsors:
- Manufacturing Engineering Division
ISBN:
978-0-7918-5135-7
PROCEEDINGS PAPER
Evaluating Tensile Properties of 3D Printed Continuous Fiber Reinforced Nylon 6 Nanocomposites Available to Purchase
Zhihui Liu,
Zhihui Liu
University of Cincinnati, Cincinnati, OH
Search for other works by this author on:
Jing Shi,
Jing Shi
University of Cincinnati, Cincinnati, OH
Search for other works by this author on:
Yachao Wang
Yachao Wang
University of Cincinnati, Cincinnati, OH
Search for other works by this author on:
Zhihui Liu
University of Cincinnati, Cincinnati, OH
Jing Shi
University of Cincinnati, Cincinnati, OH
Yachao Wang
University of Cincinnati, Cincinnati, OH
Paper No:
MSEC2018-6700, V001T01A031; 8 pages
Published Online:
September 24, 2018
Citation
Liu, Z, Shi, J, & Wang, Y. "Evaluating Tensile Properties of 3D Printed Continuous Fiber Reinforced Nylon 6 Nanocomposites." Proceedings of the ASME 2018 13th International Manufacturing Science and Engineering Conference. Volume 1: Additive Manufacturing; Bio and Sustainable Manufacturing. College Station, Texas, USA. June 18–22, 2018. V001T01A031. ASME. https://doi.org/10.1115/MSEC2018-6700
Download citation file:
70
Views
Related Proceedings Papers
Related Articles
Tensile Performance of Fused Deposition Modeling PA 6 Polymer Composites With Nanoparticle Reinforcement and/or Continuous Fiber Reinforcement
J. Micro Nano-Manuf (December,2019)
Microstructural Design of Graphene Nanocomposites for Improved Electrical Conductivity
J. Eng. Mater. Technol (October,2021)
Modeling Ampacity in Advanced Electrical Conductors
J. Heat Transfer (August,2022)
Related Chapters
Layer Arrangement Impact on the Electromechanical Performance of a Five-Layer Multifunctional Smart Sandwich Plate
Advanced Multifunctional Lightweight Aerostructures: Design, Development, and Implementation
Novel and Efficient Mathematical and Computational Methods for the Analysis and Architecting of Ultralight Cellular Materials and their Macrostructural Responses
Advances in Computers and Information in Engineering Research, Volume 2
Characterization of Ultra-High Temperature and Polymorphic Ceramics
Advanced Multifunctional Lightweight Aerostructures: Design, Development, and Implementation