Metamaterials are architected artificial materials engineered to exhibit properties not typically found in natural materials. Increasing attention has recently been given to mechanical metamaterials with unprecedented mechanical properties including high stiffness, strength, or/and resilience even at extremely low density. These unusual mechanical performances emerge from the three-dimensional (3D) spatial arrangement of the micro-structural elements designed to effectively distribute mechanical loads. Recent advances in additive manufacturing in micro-/nano-scale have catalyzed the growing interest in this field.

This work presents a new lightweight microlattice with tunable and recoverable mechanical properties using a three-dimensionally architected shape memory polymer (SMP). SMP microlattices were fabricated utilizing our micro additive manufacturing technique called projection micro-stereolithography (PμSL), which uses a digital micro-mirror device (DMD™) as a dynamically reconfigurable photomask. We use a photo-crosslinkable and temperature-responsive SMP which can retain its large deformation until heated for spontaneous shape recovery. In addition, it exhibits remarkable elastic modulus changes during this transition. We demonstrate that mechanical responses of the micro 3D printed SMP microlattice can be reversibly tuned by temperature control. Mechanical testing result showed that stiffness of a SMP microlattice changed by two orders of magnitude by a moderate temperature shift by 60°C. Furthermore, the shape memory effect of the SMP allows for full restitution of the original shape of the microlattice upon heating even after substantial mechanical deformation. Mechanical metamaterials with lightweight, reversibly tunable properties, and shape recoverability can potentially lead to new smart structural systems that can effectively react and adapt to varying environments or unpredicted loads.

This content is only available via PDF.
You do not currently have access to this content.