This paper presents an electric-field-driven (EFD) jet deposition 3D printing technique, which is based on the induced electric field and electrohydrodynamic (EHD) cone-jetting behavior. Unlike the traditional EHD-jet printing with two counter electrodes, the EFD jet 3D printing only requires a nozzle electrode to induce an electric field between the nozzle and the target substrate. Taking into account both printing accuracy and printing efficiency, two novel working modes which involve pulsed cone-jet mode and continuous cone-jet mode, are proposed for implementing multi-scale 3D printing. In this work, significant relationships between the printing results and process parameters (voltage, air pressure, pulse duration time, and stage velocity) were investigated to guide the reliable printing in both working modes. Furthermore, the experimental studies were carried out to demonstrate the capabilities and advantages of the proposed approach, which included the suitability of various substrate, the capacity of conformal printing, and the diversity of the compatible materials. Finally, four typical printing results were provided to demonstrate the feasibility and effectiveness of the proposed technology for micro-scale 2D patterning and macro/microstructures multi-scale fabrication. As a result, this research provides a novel micro-scale 3D printing technique with low cost, high resolution and good generalizability. The breakthrough technique paves a way for implementing highresolution 3D printing, especially for multi-scale and multimaterial additive manufacturing.

This content is only available via PDF.
You do not currently have access to this content.