In order to increase the hot workability and provide proper hot forming parameters for nitrogen controlled Z2CN19-10 austenitic stainless steel, the static recrystallization behavior was investigated by double-pass hot compression tests in the temperature range of 950–1100°C, initial grain size of 72μm–152μm, and the strain rates of 0.01, 0.1, 1, and 5 s−1. The tests were conducted with inter-pass times varying between 1 and 100 s after achieving a pass strain of 0.05, 0.1, 0.15 and 0.2 in the first pass on a Gleeble-1500 thermo-mechanical simulator. The static recrystallization fraction has been predicted by the 2 % offset stress method and verified by metallographic observations. The metallographic results indicate the crystallized grains generate at the cross of the prior austenite grain boundary and grow up. Also the kinetics of static recrystallization behavior for Z2CN19-10 steel are proposed. Experimental results show that the volume fraction of static recrystallization increases with the increase of deformation temperature, strain rates, pass strain and interval time, while it decreases with the increase of initial grain size. According to the present experimental results, the activation energy (Q) and Avrami exponent (n) was determined as 199.02kJ/mol and 0.69. The established equations can give a reasonable estimate of the static recrystallization behavior for Z2CN19-10 steel.

This content is only available via PDF.
You do not currently have access to this content.