Throughout the past decade the popularity of additive manufacture (AM) has grown tremendously. Although AM has been deemed as an environmentally friendly alternative to traditional processes, there have already been several studies done showing that AM processes can affect human health and the environment by emitting particles of a dynamic size range into its surrounding during a print. The objective of this paper is to look deeper into the issue of particle emissions from one of the most popular AM processes i.e. fused deposition modeling (FDM). Particle emissions from a Makeblock 3-D printer enclosed in a chamber and placed in a Class 1 cleanroom are measured using a high temporal resolution electrical low pressure impactor (ELPI) which takes close-to-real-time measurements of particles in the range of 6–200nm. A honeycomb cube with side length 1.25” and the NIST standard testing part are printed using acrylonitrile butadiene styrene (ABS) filament. Results show that particle emissions are closely related to the filament residence time in the extruder while less related to extruding speed. The initial spike of particle concentration right after printing starts is likely due to the long time needed to heat the extruder and the bed to the desired temperature. It is suggested that part geometry/features and build path could significantly affect particle emissions. TEM images suggest that particles may be formed through vapor condensation and coagulation of small particles.

This content is only available via PDF.
You do not currently have access to this content.