Surface plasmon polaritons are associated with the light-nanoparticle interaction and results in high enhancement in the gap between the particles. Indeed, this is affected by particle size, spacing, interlayer distance and light source properties. Polarization effect on three-dimensional (3D) and out of plane nanoparticle packings are presented herein to understand the out of plane configuration effect by using 532 nm plane wave light. This analysis gives insight on the particle interactions between the adjacent layers for multilayer nanoparticle packings. It has been seen that the electric field enhancement is up to 400 folds for TM (Transverse magnetic) or X-polarized light and 26 folds for TE (Transverse electric) or Y-polarized light. Thermo-optical properties change nonlinearly between 0 and 10 nm gap spacing due to the strong and non-local near-field interaction between the particles for the TM polarized light; however, this is linear for TE polarized light. This will give insight on the micro/nano heat transport for the interlayer particles for 100 nm diameter of Cu nanoparticle packings under 532 nm light under different polarization for 3-D interconnect (IC) manufacturing.

This content is only available via PDF.
You do not currently have access to this content.