To date, the industrial production of metal foam components has remained challenging, since few methods exist to manufacture metal foam into the shapes required in engineering applications. Laser forming is currently the only method with a high geometrical flexibility that is able to shape arbitrarily sized parts. What prevents the industrial implementation of the method, however, is that no detailed experimental analysis has been done of the metal foam strain response during laser forming, and hence the existing numerical models have been insufficiently validated. Moreover, current understanding of the laser forming process is poor, and it has been assumed, without experimental proof, that the temperature gradient mechanism (TGM) from sheet metal forming is the governing mechanism for metal foam.
In this study, these issues were addressed by using digital image correlation (DIC) to obtain in-process and post-process strain data that was then used to validate a numerical model. Additionally, metal foam laser forming was compared with metal foam 4-point bending and sheet metal laser forming to explain why metal foam can be bent despite its high bending stiffness, and to evaluate whether TGM is valid for metal foam.
The strain measurements revealed that tensile stretching is only a small contributor to foam bending, with the major contributor being compression-induced shortening. Unlike in sheet metal laser forming, this shortening is achieved through cell wall bending, as opposed to plastic compressive strains. Based on this important difference with traditional TGM, a modified temperature gradient mechanism (MTGM) was proposed.