In this paper, the commercial FEM software package Abaqus is used to investigate the effects of microgrooved cutting tools in high speed orthogonal cutting of AISI 1045 steel. Microgrooves are designed and fabricated on the rake face of cemented carbide (WC/Co) cutting inserts. A coupled Eulerian-Lagrangian (CEL) finite element model is developed based on Abaqus to solve the evolution of the cutting temperature, chip morphology, cutting force, and phase constitutes simultaneously. This model is validated by comparing the numerical results with the experimental data for orthogonal high speed cutting of AISI 1045 steel with various cutting conditions. In addition, this model is also validated by comparing with the experimental data of regular tool and microgrooved cutting tool under the cutting speed of 120m/min. This validated CEL FEM model is then utilized to investigate the effects of microgrooved cutting tools on the phase transformation, cutting force, cutting temperature, and chip morphology in high speed orthogonal cutting of AISI 1045. The effects of microgroove width, edge distance (the distance from cutting edge to the first microgroove), and microgroove depth are examined and assessed in terms of cutting force, cutting temperature, chip morphology, and phase transformation. It is found that this CEL FEM model can capture the essential features of orthogonal high speed cutting of AISI 1045 using microgrooved cutting tools. It is also concluded that microgrooved cutting tools can not effectively reduce the cutting force in high speed machining, which is contrary to the conclusion obtained for low speed machining in previous research. However, microgrooves on the rake face have influence on the austenite percentage in the chip near the rake face. This research provides insightful guidance for optimizing the cutting performance in terms of cutting temperature, cutting force, chip morphology, and phase transformation in high speed machining of AISI 1045 steel.
Skip Nav Destination
ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing
June 4–8, 2017
Los Angeles, California, USA
Conference Sponsors:
- Manufacturing Engineering Division
ISBN:
978-0-7918-5072-5
PROCEEDINGS PAPER
CEL FEM Investigation of Effects of Microgrooved Cutting Tools in High Speed Machining of AISI 1045 Steel Available to Purchase
Nick H. Duong,
Nick H. Duong
Saint Louis University, Saint Louis, MO
Search for other works by this author on:
Shuting Lei
Shuting Lei
Kansas State University, Manhattan, KS
Search for other works by this author on:
Han Wu
Saint Louis University, Saint Louis, MO
Nick H. Duong
Saint Louis University, Saint Louis, MO
J. Ma
Saint Louis University, Saint Louis, MO
Shuting Lei
Kansas State University, Manhattan, KS
Paper No:
MSEC2017-2932, V001T02A034; 12 pages
Published Online:
July 24, 2017
Citation
Wu, H, Duong, NH, Ma, J, & Lei, S. "CEL FEM Investigation of Effects of Microgrooved Cutting Tools in High Speed Machining of AISI 1045 Steel." Proceedings of the ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing. Volume 1: Processes. Los Angeles, California, USA. June 4–8, 2017. V001T02A034. ASME. https://doi.org/10.1115/MSEC2017-2932
Download citation file:
49
Views
Related Proceedings Papers
Related Articles
Evidence of Ductile Tearing Ahead of the Cutting Tool and Modeling the Energy Consumed in Material Separation in Micro-Cutting
J. Eng. Mater. Technol (April,2007)
Experimental Tool Temperature Distributions in Oblique and Orthogonal Cutting Using Chip Breaker Geometry Inserts
J. Manuf. Sci. Eng (May,2006)
Finite Element Modeling of Edge Trimming Fiber Reinforced Plastics
J. Manuf. Sci. Eng (February,2002)
Related Chapters
Cutting Performance and Wear Mechanism of Cutting Tool in Milling of High Strength Steel 34CrNiMo6
Proceedings of the 2010 International Conference on Mechanical, Industrial, and Manufacturing Technologies (MIMT 2010)
GA Based Multi Objective Optimization of the Predicted Models of Cutting Temperature, Chip Reduction Co-Efficient and Surface Roughness in Turning AISI 4320 Steel by Uncoated Carbide Insert under HPC Condition
Proceedings of the 2010 International Conference on Mechanical, Industrial, and Manufacturing Technologies (MIMT 2010)
Modeling of Cutting Force in Vibration-Assisted Machining
Vibration Assisted Machining: Theory, Modelling and Applications