Laser-assisted machining (LAM) process is an effective method to facilitate material removal processes for difficult-to-cut materials. In LAM process, the mechanical strength of various materials is reduced by a laser heat source focused in front of the cutting tool during machining. Since the laser heat source is located ahead of the cutting tool, the workpiece is preheated by the heat source. This enables difficult-to-cut materials to be machined more easily with low cutting energy, increasing the machining productivity and accuracy. It is difficult to apply laser-assisted milling (LAMilling) to workpieces having complex shapes, because it is not easy to control laser preheating and the cutting tool path for three-dimensionally shaped workpieces. LAMilling has only been used in limited fields such as single-direction machining of flat surfaces. To apply this process in the industrial field, studies on workpieces having various shapes are needed. This study aims to develop a laser-assisted milling device having multiple axes and to investigate the machining characteristics of several difficult-to-cut materials.

This content is only available via PDF.
You do not currently have access to this content.