This paper presented a novel 3D printing technique to fabricate graphene aerogel based on directional freezing. Thermal property of the graphene ink is one of key factors in this process which affects the material integrity and morphology as well as process efficiency and reliability. The major objective of this paper is to develop a heat transfer model to efficiently and reliably predict the temperature evolution of the printed materials and the waiting time between the layers for any input geometry. The simulation results show that the input geometry significantly affects the temperature evolution and waiting time. The proposed technique can not only improve the process efficiency and reliability, it can also serve as a flexible tool to predict and control the microstructure of the printed graphene aerogels.

This content is only available via PDF.
You do not currently have access to this content.