Shape deformation is an important issue in additive manufacturing (AM) processes such as the projection-based Stereolithography. Volumetric shrinkage and thermal cooling during the photopolymerization process combined with other factors such as the layer-constrained building process lead to complex deformation that is difficult to predict and control. In this paper, a general reverse compensation method and related computation framework are presented to reduce the shape deformation of AM fabricated parts. During the reverse compensation process, the shape deformation is calculated based on physical measurements of shape deformation. A novel method for identifying the correspondence between the deformed shape and the given nominal computer-aided design (CAD) model is presented based on added markers. Accordingly, a new CAD model based on the shape deformation and related compensation is computed. The intelligently revised CAD model by going through the same building process can result in a fabricated part that is close to the nominal CAD model. Two test cases have been designed to demonstrate the effectiveness of the presented method and the related computation framework. The shape deformation in terms of L2- and L-norm based on measuring the geometric errors is reduced by 40–60%.

This content is only available via PDF.
You do not currently have access to this content.