In this paper, we develop and apply feature extraction and selection techniques to classify tool wear in the shaving process. Because shaving tool condition monitoring is not well-studied, we extract both traditional and novel features from accelerometer signals collected from the shaving machine. We then apply a heuristic feature selection technique to identify key features and classify the tool condition. Run-to-life data from a shop-floor application is used to validate the proposed technique.

This content is only available via PDF.
You do not currently have access to this content.