Bending is a fundamental manufacturing process to form sheet metals into intended angular geometries. Although the process has been extensively studied, predicting its accuracy is still challenging due to the Springback phenomenon inherent to the process. This research intends to combine bending and machining processes to improve bent workpiece angular dimensional accuracy. A minimum enclosing CAD model is first obtained by determining optimum thickness from the bend part CAD model to accommodate the estimated Springback in order to guide the selection of blank workpiece dimension for this bending/machining strategy. Then the machining areas are determined and the cutting forces are predicted to estimate the deformation in the machining process. Toolpath is planned on the surface profile considering both the cutter deflection and the incurred workpiece deformation during machining. This project aims to produce a bending part with the desired dimensional accuracy through a hybrid manufacturing approach. More importantly, it also provides a technological foundation to prototype angled parts at a low cost by avoiding high expenses in making new die.

This content is only available via PDF.
You do not currently have access to this content.