Mg alloys are promising materials for bone implant applications mainly due to their low specific density, desirable stiffness and bioresorbability in the human body. Mg-Zn-Ca alloys are among the most promising materials for resorbable orthopedic fixation devices due to their superior biocompatibility. However, the mechanical and corrosion properties of the as-cast Mg-Zn-Ca alloys are insufficient. Heat treatment is a practical approach for strengthening Mg alloys especially after the fabrication of porous structures and 3D-printed components.

We have investigated heat treatment of these devices and have studied the resulting microstructure of Mg-1.6Zn-0.5Ca (wt. %) alloys by hardness, compression, scanning electron microscopy (SEM), and electrochemical and immersion corrosion tests. Mg-1.6Zn-0.5Ca alloy was prepared with high purity Mg, Zn and Ca by casting. The cast ingots were solution-treated at 510 °C for 3 h then quenched in water. The quenched ingots were age hardened in an oil bath at 200 °C for 2 h. Pure Mg, as-cast and heat-treated Mg-1.6Zn-0.5Ca alloy ingots were cut into coupons to characterize their mechanical and corrosion properties. In vitro corrosion tests were conducted in modified simulated body fluid (m-SBF) at pH 7.4 and 37 °C.

The hardness of the Mg-Zn-Ca alloy was significantly increased from 52.6 to be 66.8 HV after heat treatment. Also, the compression test results revealed that the heat-treated alloy has the highest compressive yield and ultimate strengths without significant change in stiffness and maximum strain. The mass loss of the Mg-Zn-Ca alloy by week 4 of the in vitro immersion test reduced from 174.6 mg/cm2 for the as-cast alloy to 101.7 mg/cm2 after the heat-treatment process. Heat-treatment was found to be a powerful post-shaping process not only to enhance the mechanical properties of the Mg-1.6Zn-0.5Ca (wt. %) alloy, but also to significantly improve its biocorrosion properties. Such heat-treated alloys can also be coated with biocompatible ceramics that provide additional protection from corrosion during the bone healing period (3–4 months).

This content is only available via PDF.
You do not currently have access to this content.