One of the major issues with forming sheet metal is the tendency for parts to spring back towards their original shape when the applied loading is released. Springback is a form of geometric inaccuracy and is the result of residual stresses, which are created as the part deforms. As a result, forming intricate parts require specialized equipment and calculations to compensate for springback. Transportation industries that rely on forming high strength parts currently use complicated machinery that takes up time and energy to meet specifications. This research investigates the effects of electrically assisted manufacturing (EAM), a process in which electrical current is applied while a material is being manufactured, on springback. Bending and flattening testing will be performed on 4 metals: stainless steel 304 and 316, ASM-T-9046 titanium, and AZ31B magnesium. Additional testing will be performed on stainless steel, observing the effect of changing thicknesses, pulse durations, and current densities on springback. It was observed that an increase in pulse durations results in decreased springback for all the materials. Applying electricity to decrease springback was more effective for bending than flattening procedures in stainless steel and titanium, though it was equally effective for magnesium. For the additional testing on stainless steel, a change in thickness affected results when comparing it to current density, but not when observing similar applied current.

This content is only available via PDF.
You do not currently have access to this content.