It has been shown that electrically assisted machining has the ability to reduce cutting force, change chip type, and improve surface finish. However, the effect of electricity on tungsten carbide has not been examined, a material often used to create cutting tools used in electrically assisted machining. During machining processes, depending on the type of cut, a small amount of the tool may be in contact with the workpiece. This will lead to an increased current density at that point on the tool which could lead to undesired effects with respect to tool wear and life. This paper conducts electrically assisted compression tests on uncoated tungsten carbide rod to examine the effect of electricity on the material and determine if there are any current densities that cause large magnitude weakening of the tungsten carbide. It is concluded that there is a maximum current density that can be passed through tungsten carbide before thermal softening becomes a problem. At a current density lower than this threshold, electricity has little effect on the strength of the carbide. This work is related to past electrically assisted turning experimentation.
Skip Nav Destination
ASME 2016 11th International Manufacturing Science and Engineering Conference
June 27–July 1, 2016
Blacksburg, Virginia, USA
Conference Sponsors:
- Manufacturing Engineering Division
ISBN:
978-0-7918-4989-7
PROCEEDINGS PAPER
Electrically Assisted Compression of Tungsten Carbide and its Implications for Electrically Assisted Machining
Brandt J. Ruszkiewicz,
Brandt J. Ruszkiewicz
Clemson University, Greenville, SC
Search for other works by this author on:
Laine Mears
Laine Mears
Clemson University, Greenville, SC
Search for other works by this author on:
Brandt J. Ruszkiewicz
Clemson University, Greenville, SC
Laine Mears
Clemson University, Greenville, SC
Paper No:
MSEC2016-8554, V001T02A013; 5 pages
Published Online:
September 27, 2016
Citation
Ruszkiewicz, BJ, & Mears, L. "Electrically Assisted Compression of Tungsten Carbide and its Implications for Electrically Assisted Machining." Proceedings of the ASME 2016 11th International Manufacturing Science and Engineering Conference. Volume 1: Processing. Blacksburg, Virginia, USA. June 27–July 1, 2016. V001T02A013. ASME. https://doi.org/10.1115/MSEC2016-8554
Download citation file:
28
Views
Related Proceedings Papers
Related Articles
A Geometrical Simulation System of Ball End Finish Milling Process and Its Application for the Prediction of Surface Micro Features
J. Manuf. Sci. Eng (February,2006)
On a Novel Tool Life Relation for Precision Cutting Tools
J. Manuf. Sci. Eng (May,2005)
Binderless CBN Tools, a Breakthrough for Machining Titanium Alloys
J. Manuf. Sci. Eng (May,2005)
Related Chapters
Cutting Performance and Wear Mechanism of Cutting Tool in Milling of High Strength Steel 34CrNiMo6
Proceedings of the 2010 International Conference on Mechanical, Industrial, and Manufacturing Technologies (MIMT 2010)
Effectiveness of Minimum Quantity Lubrication (MQL) for Different Work Materials When Turning by Uncoated Carbide (SNMM and SNMG) Inserts
Proceedings of the 2010 International Conference on Mechanical, Industrial, and Manufacturing Technologies (MIMT 2010)
Cutting Tool Wear Monitoring Applying Support Vector Machines and Genetic Algorithms
International Conference on Advanced Computer Theory and Engineering (ICACTE 2009)