With an increase in fuel economy standards and the need for reducing emissions set for the automotive sector, has resulted in the increased demand for lightweight vehicles. It is well know that the single heaviest component of a passenger vehicle is the body structure, thus has the greatest potential for significantly reducing the vehicles mass. Therefore, transitioning from steel-based bodies to ones composed of lightweight materials, such as: aluminum, magnesium and advanced high strength steels are of great interest. However, with the introduction of these new materials comes with a new means of joining, where conventional methods do not work. Therefore, this work examines a novel joining technique, flow drill screwdriving which is a thermo-mechanical process for joining aluminum and dissimilar materials. The focus of this work is to examine the residual stress distribution in a joint, because mechanical behavior and joint quality are greatly affected by the residual stress. Neutron diffraction was used for the determination of the residual stress in two samples processed with low and high fastener force. The high penetration depth of neutron radiation allows for the determination of triaxial residual stress states inside the material without destruction of the sample. It was found that the stress field around the joint location is primarily in tension, which is problematic if external forces are applied near the joint. Therefore, additional stress measurements were conducted under applied load through a lap shear test. Two load levels were applied to determine the effects on stress concentrations around the proximity of the joint.
Skip Nav Destination
ASME 2016 11th International Manufacturing Science and Engineering Conference
June 27–July 1, 2016
Blacksburg, Virginia, USA
Conference Sponsors:
- Manufacturing Engineering Division
ISBN:
978-0-7918-4989-7
PROCEEDINGS PAPER
Residual Stresses in Flow Drill Screwdriving of Aluminum Alloy Sheets
Thomas Gnäupel-Herold,
Thomas Gnäupel-Herold
NIST, Gaithersburg, MD
Search for other works by this author on:
Jamie D. Skovron
Jamie D. Skovron
Clemson University, Greenville, SC
Search for other works by this author on:
Justin L. Milner
NIST, Gaithersburg, MD
Thomas Gnäupel-Herold
NIST, Gaithersburg, MD
Jamie D. Skovron
Clemson University, Greenville, SC
Paper No:
MSEC2016-8823, V001T02A012; 6 pages
Published Online:
September 27, 2016
Citation
Milner, JL, Gnäupel-Herold, T, & Skovron, JD. "Residual Stresses in Flow Drill Screwdriving of Aluminum Alloy Sheets." Proceedings of the ASME 2016 11th International Manufacturing Science and Engineering Conference. Volume 1: Processing. Blacksburg, Virginia, USA. June 27–July 1, 2016. V001T02A012. ASME. https://doi.org/10.1115/MSEC2016-8823
Download citation file:
40
Views
Related Proceedings Papers
Laser-Assisted Friction Element Welding
IMECE2021
Related Articles
Through-Thickness Residual Stress Distribution After the Cold Expansion of Fastener Holes and Its Effect on Fracturing
J. Eng. Mater. Technol (January,2004)
Effects of Process Parameters on Friction Stir Spot Welding of Aluminum Alloy to Advanced High-Strength Steel
J. Manuf. Sci. Eng (August,2017)
Finite-Element and Residual Stress Analysis of Self-Pierce Riveting in Dissimilar Metal Sheets
J. Manuf. Sci. Eng (February,2017)
Related Chapters
In Situ Observations of the Failure Mechanisms of Hydrided Zircaloy-4
Zirconium in the Nuclear Industry: 20th International Symposium
Subsection NG—Core Support Structures
Companion Guide to the ASME Boiler & Pressure Vessel Codes, Volume 1 Sixth Edition
Stress Concentration Factors in Multiple Row Joints
Structural Shear Joints: Analyses, Properties and Design for Repeat Loading