Incremental Sheet Forming (ISF) is a flexible forming process suitable for low volume production of sheet metal components. Single Point Incremental Forming (SPIF), which has only one tool forming the geometry, is the simplest variant of incremental forming. Bending of sheet between the component opening and the fixed boundary is unavoidable in SPIF due to the absence of support/backup. Double Sided Incremental Forming (DSIF) has two tools which can be used interchangeably for forming and providing local support. The accuracy of parts formed using DSIF is superior to those formed using SPIF as the unwanted bending is substantially reduced by providing local support. In addition DSIF is capable of forming components with features on both sides of the initial plane of sheet and convex and concave features without additional setup.

In ISF, as the deformation progresses, the intended geometry slowly develops, this increases the stiffness of the sheet. While forming multiple features, the forming sequence greatly affects the way stiffness builds-up, which further affects the geometry of formed components. In the present work, an experimental investigation is carried out to demonstrate the affect of forming sequence on the geometries and accuracy of formed component. Results presented show that the feature sequencing greatly affects the geometry and accuracy of formed components.

This content is only available via PDF.
You do not currently have access to this content.