The continuous trend towards miniaturization of metallic micro parts of high quality at low costs results in the need of appropriate production methods. Mechanical manufacturing processes like forming and blanking meet these demands. One major challenge for the application of them are so called size effects. Especially the downsizing of the required manufacturing tools and adequate positioning causes higher effort with increasing miniaturization. One promising approach for downsizing of tools is the transfer of knowledge from microsystems technology. This study shows the process behavior of etched silicon punches in microblanking operations. For the application as tool material especially the brittle material behavior and sensitivity against tensile stresses have to be considered. These mechanical loads favor wear in form of cracks and breaks at the cutting edge of the punch and decrease tool life. In a special test rig these wear phenomena were observed in microblanking of copper foils. Although high positioning accuracy between tools and workpiece can be assured within this test rig, scatter of tool life is observable. Therefore, a finite element analysis of the tool load in the microblanking process with special respect to tensile stresses was performed. Within the 3D finite element model multidimensional positioning errors like tilting between punch and die were integrated. Their influence on the tool load in form of increasing tensile stresses is evaluated with respect to the type and magnitude of positioning error. Furthermore, the effects of small outbreaks at the cutting edge on the process behavior and tool load are analyzed.

This content is only available via PDF.
You do not currently have access to this content.