Powder-bed electron beam additive manufacturing (EBAM) has emerged as a cost-effective process for many industrial applications. Intuitively, EBAM would not require support structures for overhang geometry because the powder bed would self-support the overhang weight. However, without a proper support structure, overhang warping actually occurs in practices. In this study, a two dimensional (2D) finite element (FE) model was developed to study the thermomechanical process of EBAM. The model was applied to evaluate (1) the process parameter effect, (2) the overhang and support configuration effect, and (3) the powder porosity effect on overhang deformations. The major results are summarized as follows. (1) Increasing the beam speed and diameter will result in less deformation in an overhang area, while increasing the beam current will worsen the deformation condition. (2) A smaller tilt angle will cause a larger overhang deformation. (3) A support column, even placed away from the solid substrate side, will minimize overhang deformations. (4) An anchor-free solid piece beneath the overhang can reduce the deformation with an appropriate gap. (5) A lower powder porosity level may alleviate overhang deformations.

This content is only available via PDF.
You do not currently have access to this content.