This paper investigates the ability of the equal channel angular extrusion (ECAE) process to induce morphological changes and hence tune the mechanical properties of high-density polyethylene (HDPE). In this study, differential scanning calorimetry (DSC), compression and cylindrical macro-indentation tests have been used to investigate the evolution of the mechanical properties of HDPE processed by ECAE up to four passes via route BC, i.e. counter clockwise 90° billet rotation about its longitudinal axis.

It was found that the ECAE process induces significant plastic deformations with changes in the crystalline structure. The ECAE process increased the HDPE crystallinity by 10 to 15%. The number of ECAE passes has a significant effect on the magnitude of the mechanical properties especially on the elastic modulus and yield stress. Young’s modulus and yield strength decreased with increasing the number of ECAE passes and reached a stationary state after the third pass.

This content is only available via PDF.
You do not currently have access to this content.