Mass reduction of automotive body structures is a critical part of achieving reduced CO2 emissions in the automotive industry. There has been significant work on the application of ultra high strength steels and aluminum alloys. However, the next paradigm is the integrated use of both materials, which creates the need to join them together. Friction stir forming is a new environmentally benign manufacturing process for joining dissimilar materials. The concept of this process is stir heating one material and forming it into a mechanical interlocking joint with the second material. In this research the process was experimentally analyzed in a computer numerical controlled machining center between aluminum and steel work pieces. The significant process parameters were identified and their optimized settings for the current experimental conditions defined using a design of experiments methodology. Three failure modes were identified (neck fracture, aluminum sheet peeling, and bonding delamination i.e. braze fracture). The overall joint structure and grain microstructure were mapped along different stages of the friction stir forming process. Two layers were formed within the aluminum, the thermo-mechanical affected zone that had been deformed due to the contact pressure and angular momentum of the tool, and the heat affected deformation zone that deformed into the cavity.

This content is only available via PDF.
You do not currently have access to this content.