This paper is concerned with the reliable calibration of the grinding power model. The power model used in the present paper is expressed by formulae with grinding parameters as input arguments, and a number of model constants representing a given wheel, workpiece, and grinding fluid combination. The model constants are calibrated using measured grinding forces and power, taking into consideration of the chip formation, sliding, and plowing components of the power. These correspond to the constants of specific chip formation energy uch, the coefficient of friction μ and average contact pressure pa, and the plowing force per unit width F′pl, respectively. A new generalized experimental approach was developed in this study to reflect the physical meaning of the model. Compared with other approaches, this approach does not require a pre-knowledge of the wheel wear flat area value and the regime of the average contact pressure. The proposed approach includes measurements of forces and power from surface grinding tests with a fixed set of grinding parameters conducted at different wheel dullness levels for calibrating the constant μ, as well as tests with variable workspeeds at each of the wheel dullness level for calibrating the other constants. As an application example, it was applied to calibrating the power model for grinding of a nickel-based alloy with oil as grinding fluid and electroplated CBN wheels. The calibrated model was then validated through tests under different grinding conditions.
Skip Nav Destination
ASME 2014 International Manufacturing Science and Engineering Conference collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference
June 9–13, 2014
Detroit, Michigan, USA
Conference Sponsors:
- Manufacturing Engineering Division
ISBN:
978-0-7918-4581-3
PROCEEDINGS PAPER
Exploration of a New Approach for Calibrating Grinding Power Model
Zhongde Shi,
Zhongde Shi
National Research Council Canada, Montreal, QC, Canada
Search for other works by this author on:
Changsheng Guo,
Changsheng Guo
United Technologies Research Center, East Hartford, CT
Search for other works by this author on:
Helmi Attia
Helmi Attia
National Research Council Canada, Montreal, QC, Canada
Search for other works by this author on:
Zhongde Shi
National Research Council Canada, Montreal, QC, Canada
Changsheng Guo
United Technologies Research Center, East Hartford, CT
Helmi Attia
National Research Council Canada, Montreal, QC, Canada
Paper No:
MSEC2014-3975, V002T02A008; 5 pages
Published Online:
October 3, 2014
Citation
Shi, Z, Guo, C, & Attia, H. "Exploration of a New Approach for Calibrating Grinding Power Model." Proceedings of the ASME 2014 International Manufacturing Science and Engineering Conference collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference. Volume 2: Processing. Detroit, Michigan, USA. June 9–13, 2014. V002T02A008. ASME. https://doi.org/10.1115/MSEC2014-3975
Download citation file:
12
Views
Related Proceedings Papers
Related Articles
Wheel Regenerative Chatter of Surface Grinding
J. Manuf. Sci. Eng (May,2006)
Mechanics of Loading for Electroplated Cubic Boron Nitride (CBN) Wheels During Grinding of a Nickel-Based Superalloy in Water-Based Lubricating Fluids
J. Tribol (October,2004)
Thermal Aspects of Grinding: The Case of Upgrinding
J. Manuf. Sci. Eng (November,2000)
Related Chapters
Understanding the Problem
Design and Application of the Worm Gear
Historical Development of the Windmill
Wind Turbine Technology: Fundamental Concepts in Wind Turbine Engineering, Second Edition
Molecular Dynamics Simulation of Grinding Process on Mg-Al Alloy
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3