This research is part of a larger project which aims at developing a tool to help designers create effective GD&T schemas. The first step towards this goal is to determine the particular directions in which dimensions and tolerances need to be controlled. These directions we label here as “Directions of (Dimensional) Control” or DoC for short. Regardless of whether one uses chain dimensioning, reference dimensioning or geometric tolerancing, all size and basic dimensions of position line up in a finite number of directions or Directions of Control. This paper presents an approach for automatically identifying the directions of control from CAD models of mechanical parts. The only input to the system is the geometry of parts or assemblies in STEP file format. The analysis is done part by part for an assembly. First, planar and cylindrical features are recognized and their normal/axes extracted. The extracted features are then organized into groups of parallel normal or axes directions. Cylindrical features can belong to two or more Directions of Control, while planar features belong can only belong to one. Features in each DoC are then ordered based on perpendicular relative distances. Each ordered feature list forms a linear chain in which nodes represent features and links are attributed with relative distance to the nearest neighbors on each side. DoC chains are related to each other by relative orientation. Therefore, the chains are combined into a unified graph, using the junction nodes to contain the relative orientation between the chains. The extracted Directions of Control can be output in both textual and graphical form. Although the primary motivation for automatic DoC graph generation is computer assisted tolerancing and automatic tolerance analysis, the paper also discusses other applications in manufacturing.

This content is only available via PDF.
You do not currently have access to this content.