The lamellar-type solid lubricants are readily available in a form of platelets. The diameter and thickness of these platelets are typically up to tens of microns and few microns, respectively, which are classified as micro-platelets. Some of these platelets are also available as nano-platelets whose thickness is well below a micron (even to few nanometers). In the previous work, the vegetable oil mixed with nano-platelets was enormously effective for Minimum Quantity Lubrication (MQL) machining. Clearly, the micro-platelets are not as inexpensive. In addition, the mixtures with the micro-platelets are not as stable as those with the nano-platelets. This paper intends to find the effect of the thickness differential on these platelets in MQL machining. The tribometer test shows that the nano-platelets are much more effective than the micro-platelets in reducing wear without changing the friction. With the MQL ball mill experiment, the micro-platelets present in MQL oil increased the tool wear, even compared to the traditional MQL with pure oil only. Thus, the thickness of the nano-platelets holds an important characteristic to enhance MQL-based machining.

This content is only available via PDF.
You do not currently have access to this content.