Titanium alloys are employed for several applications, ranging from aerospace to medicine. In particular, Ti-6Al-4V is the most common, thanks to an excellent combination of low density, high specific strength and corrosion resistance.

Laser welding has been increasingly considered as an alternative to traditional techniques to join titanium alloys. An increase in penetration depth and a reduction of possible welding defects is achieved indeed; moreover a smaller grain size in the fused zone is benefited in comparison to either TIG and plasma arc welding, thus providing an increase in the tensile strength of the welded structures.

The aim of this work is to develop the regression model for a number of responses which are crucial for the feature of the joint. The study was carried out on 3 mm thick Ti-6Al-4V plates; a square butt welding configuration was considered employing a disk-laser source. A 3-level factorial plan was hence arranged in a face-centred cubic scheme. The responses were analyzed referring to the governing parameters. Then, an optimization was carried out via statistical tools, in order to find the optimal welding set-up for the alloy under examination.

This content is only available via PDF.
You do not currently have access to this content.