This article illustrates the development of a complete and exhaustive mathematical model for the simulation of laser transformation hardening of hypo-eutectoid carbon steels. The authors propose an integrated approach aimed at taking into consideration all the the phenomena involved in this manufacturing process, with particular attention to implementing easy mathematical models in order to optimize the trade-off between the accuracy of the predicted results and the computational times. The proposed models involve the calculation of the 3D thermal field occurring into the workpiece and predict the microstructural evolution of the target material exploiting an original approach based on the definition of thermodynamic thresholds which can be considered as a physical constant of the material itself. Several parameters and phenomena are taken into consideration in order to accurately simulate the process: laser beam characteristics, fast austenization of the steel and tempering effect due to mutually interacting beam trajectories.

This content is only available via PDF.
You do not currently have access to this content.