A complete model of nanosecond pulsed laser scribing of arbitrary thin multi-layer structures is presented. The chain of events is separated according to time-scale; an initial simulation considers material response during the pulse; another combines this result with the much slower effects of heat flow away from the laser axis. The former considers heating, vaporisation and phase explosion of metals in the course of a single pulse, accounting for variations in thermal conductivity and optical absorption as the material becomes superheated and approaches its critical temperature. The latter calculates the bidimensional heat flow in a complete multi-layer structure over the course of a scribing operation, combining material properties and considering removal by both short-pulse ablation and long-term heating of the work piece. Simulation results for the single pulse ablation of an aluminium target align well with published experimental data both in terms of phase explosion threshold and ablation depth as a function of fluence. Bidimensional heat flow simulations of a polypropylene–aluminium–polypropylene triplex structure reveal the progression of events towards steady state behaviour; aluminium ejected due to short-pulse ablation and plastic removed due to conduction.
Skip Nav Destination
ASME 2013 International Manufacturing Science and Engineering Conference collocated with the 41st North American Manufacturing Research Conference
June 10–14, 2013
Madison, Wisconsin, USA
Conference Sponsors:
- Manufacturing Engineering Division
ISBN:
978-0-7918-5545-4
PROCEEDINGS PAPER
Modelling of Thin-Film Single and Multi-Layer Nanosecond Pulsed Laser Processing
Adrian H. A. Lutey
Adrian H. A. Lutey
Università di Bologna, Bologna, Italy
Search for other works by this author on:
Adrian H. A. Lutey
Università di Bologna, Bologna, Italy
Paper No:
MSEC2013-1093, V001T01A074; 8 pages
Published Online:
November 27, 2013
Citation
Lutey, AHA. "Modelling of Thin-Film Single and Multi-Layer Nanosecond Pulsed Laser Processing." Proceedings of the ASME 2013 International Manufacturing Science and Engineering Conference collocated with the 41st North American Manufacturing Research Conference. Volume 1: Processing. Madison, Wisconsin, USA. June 10–14, 2013. V001T01A074. ASME. https://doi.org/10.1115/MSEC2013-1093
Download citation file:
12
Views
Related Proceedings Papers
Related Articles
Modeling of Thin-Film Single and Multilayer Nanosecond Pulsed Laser Processing
J. Manuf. Sci. Eng (December,2013)
Non-Equilibrium Phase Change in Metal Induced by Nanosecond Pulsed Laser Irradiation
J. Heat Transfer (April,2002)
Thermometry and Thermal Transport in Micro/Nanoscale Solid-State Devices and Structures
J. Heat Transfer (April,2002)
Related Chapters
Microstructure Evolution and Physics-Based Modeling
Ultrasonic Welding of Lithium-Ion Batteries
Pool Boiling
Thermal Management of Microelectronic Equipment, Second Edition
Introduction
Introduction to Finite Element, Boundary Element, and Meshless Methods: With Applications to Heat Transfer and Fluid Flow