In this paper, we investigated the effect of injection molding parameters on the mechanical properties of thin-wall injection molded parts. A four-factor (melt temperature, mold temperature, injection speed and packing pressure) and three-level fractional experimental design was performed to investigate the influence of each factor on the mechanical properties and determine the optimal process conditions that maximize the mechanical properties of the part using the signal-to-noise (S/N) ratio response. The mechanical properties (e.g., elastic modulus, yield strength and strain at break) were measured by tensile tests at room temperature, at a crosshead speed of 5 mm/min, and compared with those of the injection-molded specimens.

The experimental results showed that the tensile properties were highly dependent on the injection molding parameters, regardless of the type of the specimens. The values of Young modulus and yield strength of the injection-molded specimens were lower than those of the injection-molded parts, while the elongation at break was considerably lower for the injection-molded parts. The optimal process conditions were strongly dependent on the measured performance quantities (elastic modulus, yield strength and strain at break).

This content is only available via PDF.
You do not currently have access to this content.