The X-ray diffraction (XRD) technique is employed to measure residual stress induced by the laser welding of 6.7 mm thick ASTM A514 high strength steel plates. The distribution of residual stress in the weld bead is investigated. The results indicate that the fusion zone (FZ) has the maximum tensile stress, the transition from tensile to compressive stress tends to appear in the heat affected zone (HAZ), and the initial stress far from the weld center are not influenced by the welding process. Based on the measurement data, the influence of the laser power and the welding speed on residual stress is obtained. The magnitude of residual stress near the weld bead increases with an increase in laser power or a decrease in welding speed. The welds with incomplete penetration have a considerably lower magnitude of residual stress in FZ than ones with full penetration. Post-weld heat treatment is utilized to relieve residual stress in the weld bead. Although residual stress is not completely relieved after the heat treatment, a dramatically reduced magnitude and much more uniform distribution are achieved. In addition, the effects of the laser power, the welding speed, the laser spot diameter, and the gap between two plates on the weld shape are also studied.

This content is only available via PDF.
You do not currently have access to this content.