In this study, a novel microcellular injection foaming method employing supercritical CO2 (scCO2) and water as co-blowing agents was developed to produce thermoplastic polyurethane (TPU) tissue engineering scaffolds with a uniform porous structure and no solid skin layer. Various characterization techniques were applied to investigate the cell morphology, crystallization behavior, and static and dynamic mechanical properties of solid molded samples, foamed samples using CO2 or water as a single blowing agent, and foamed samples using both CO2 and water as co-blowing agents. Compared with CO2 foamed scaffolds, scaffolds produced by the co-blowing method exhibit much more uniform cell morphologies without a noticeable reduction in mechanical properties. Moreover, these TPU scaffolds have almost no skin layer, which permits free transport of nutrients and waste throughout the samples, which is highly desirable in tissue engineering. The effect of these blowing agents on the shear viscosity of various samples is also reported.

This content is only available via PDF.
You do not currently have access to this content.