Nanodiamond (ND) is an attractive nanomaterial for reinforcement of biopolymers due to the ND’s superior mechanical and chemical properties, and low biotoxicity. A novel composite material has been produced for bone scaffolds utilizing the biodegradable polymer poly(L-lactic acid) (PLLA) and octadecylamine-functionalized nanodiamond (ND-ODA). Composites were prepared by admixing to a PLLA/chloroform solution chloroform suspension of ND-ODA in concentration range of 0–10% (w/w). The dispersion of ND-ODA evaluated by transmission electron microscopy (TEM) shows uniform distribution of ND-ODA in PLLA matrix. The composites were characterized by differential scanning calorimetry (DSC). DSC analysis of the composites showed no significant thermal behavior changes with the addition of ND-ODA into the polymer. Biomineralization test shows that ND-ODA can enhance the mineral deposition on scaffolds. Improved mechanical properties and good biocompatibility with enhanced biomineralization combined suggest that ND-ODA/PLLA might have potential applications for bone tissue engineering.

This content is only available via PDF.
You do not currently have access to this content.