High-definition metrology (HDM) systems with fine lateral resolution are capable of capturing the surface shape on a machined part that is beyond the scope of measurement systems employed in manufacturing plants today. Such surface shapes can precisely reflect the impact of cutting processes on surface quality. Understanding the cutting processes and the resultant surface shape is vital to identifying opportunities for high-precision machining process monitoring and control. This paper presents modeling and experiments of a face milling process to extract surface patterns from measured HDM data and correlate these patterns with cutting force variation. A relation is established between instantaneous cutting forces and the observed dominant patterns along the feed and circumferential directions. Potential applications of such relationship in process monitoring, diagnosis, and control are also discussed.

This content is only available via PDF.
You do not currently have access to this content.