The objective of this paper is to assess the correlation of volumetric tool wear (VTW) and wear rate of carbide tools on the material removal rate (MRR) of titanium alloys. A previously developed methodology for assessing the worn tool material volume is utilized for quantifying the VTW of carbide tools when machining Ti-6Al-4V. To capture the tool substrate response, controlled milling experiments are conducted at suitable corner points of the feed-speed design space for constant stock material removal volumes. For each case, the tool material volumes worn away, as well as the corresponding volumetric wear profile evolution in terms of a set of geometric coefficients are quantified — these are then related to the MRR. Further, the volumetric wear rate and the M-ratio (volume of stock removed to VTW), which is a measure of the cutting tool efficiency, are related to the MRR — these provide a tool-centered optimal MRR in terms of profitability. This work not only elevates tool wear from a 1-D to 3-D concept, but helps in assessing machining economics from a stock material removal efficiency perspective as well.

This content is only available via PDF.
You do not currently have access to this content.