A multidisciplinary design optimization (MDO) process of a large scale hybrid composite wind turbine blade is developed. Multiple objectives are considered in this design optimization: maximize length of blade, minimize weight and manufacturing cost. A wind turbine blade is divided into regions and the layup sequences for each region are considered as design variables. Applied load due to extreme wind condition for rotor rotation and rotor stop condition are considered for finite element analysis (FEA) to evaluate the structural strength. The structural stiffness is designed and illustrated so that the natural frequency of the blade does not coincidence with the excitation frequency of the wind turbine. A process of obtaining an optimum hybrid composite laminate layup and an optimum length of wind turbine blade is developed in this research.

This content is only available via PDF.
You do not currently have access to this content.