Dry machining is considered as a green manufacturing process because the use of cutting fluids has concerns about environmental contamination and health hazards. However, in grinding, the use of cutting fluids is a common strategy to improve the cutting performance and the product surface finish due to the transportation of heat away from the cutting zone. Vibration-assisted machining is a novel technology which is an efficient technique for high quality surface finish in dry cutting. The purpose of this paper is to investigate the feasibility of vibration-assisted grinding of SKD61 steels, where the amplitude about 1 μm with a frequency about 10 KHz is applied. This study compares the machined surface finish in vibration-assisted grinding to that in conventional machining based on experimental measurements. The effects of the grinding and vibrating conditions on the ground surface finish are studied. A near mirror surface (Ra = 0.05 μm) is achieved at the vibration frequency of 11.4 KHz in this paper. It is also found that the best surface finish in vibration-assisted grinding is affected both by the feed and the vibration frequencies. The experimental results show that proper combination of grinding and vibration parameters should be carefully chosen to prevent instability in grinding.

This content is only available via PDF.
You do not currently have access to this content.