This paper aims to present an optimization process for three different types of loading paths studied in the numerical simulation of tube hydroforming of diamond-shaped sheet products. These three different types of loading paths werestudied in a numerical simulation of tube hydroforming of diamond-shaped products. The loading paths by which the best final shapes were obtained in the simulation were adopted in actual processing operation. A series of experiments were conducted within the temperature range of 270±10°C. Constitutive behavior was assumed to be elasto-plastic, and the material parameters used in the simulation were obtained from corresponding literature. The designed loading ratios were incorporated into the model to obtain the corresponding hydroforming results. The simulation results are used in the experimental verification and the products were compared with the simulation results. The experimental results showed a good agreement with the predicted numerical results, indicating that FEM simulation is an effective tool in optimizing processing procedures.

This content is only available via PDF.
You do not currently have access to this content.