Recent development of Electrically-Assisted Manufacturing processes proved the advantages of using the electric current, mainly related with the decrease in the mechanical forming load and improvement in the formability when electrically-assisted forming of metals. The reduction of forming load was formulated previously assuming that a part of the electrical energy input is dissipated into heat, thus producing thermal softening of the material, while the remaining component directly aids the plastic deformation. The fraction of electrical energy applied that assists the deformation process compared to the total amount of electrical energy is given by the electroplastic effect coefficient. The objective of the current research is to investigate the complex effect of the electricity applied during deformation, and to establish a methodology for quantifying the electroplastic effect coefficient. Temperature behavior is observed for varying levels of deformation and previous cold work. Results are used to refine the understanding of the electroplastic effect coefficient, and a new relationship, in the form of a power law, is derived. This model is validated under independent experiments in Grade 2 (commercially pure) and Grade 5 (Ti-6Al-4V) titanium.

This content is only available via PDF.
You do not currently have access to this content.