This paper presents a novel technique to estimate the temperature distribution of a milling tool during machining. In this study, heat generation during the machining process is estimated using cutting forces. We consider the heat to be time-dependent heat flux into the tool. In the proposed model, we discretize each rake face on a mill into several elements; each experiences time-dependent heat flux. Second, we approximate the time-dependent heat flux as several constant heat input starts at different time. Finally, we sum the temperature rise from each heat flux to obtain the overall temperature change. A similar concept is applied on the flank surface, where the flank wear area is modeled as an additional heat generation zone. Experimental results are presented to validate the developed model.

This content is only available via PDF.
You do not currently have access to this content.