We also observed the dynamic contact state of gear meshing in operating conditions with a high-speed camera. The temperature distribution when driving was measured by thermography. Contact ratio is often used to show contact state, but there are currently no reports that describe the dynamic contact ratio of FRP gears although there are some reports on plastic gears. We therefore considered a contact ratio formula based on a new contact model that the dynamic real deflections of the gear tooth. The temperature distribution measurement was done from the side and the upper surface of the gear. The characteristics of heat generation on the surface of each gear tooth were analyzed, and the temperature distribution was analyzed according to the time and each point of the tooth. (1) FRP gears over heated as a result of driving by the metal gear for a long time. The rise in temperature was rapid and was compounded by heat dissipated from the metal gear. (2) The pitch point of the FRP gear tooth had the highest temperature. The reason for this is that the hysteresis heating is large. It is not easy for the gear to dissipate heat. (3) The temperature rose as a result of hysteresis heating. At high torque, the back surface contact and deflection of the teeth also increased because the gear became viscoelastic.

This content is only available via PDF.
You do not currently have access to this content.