Recent developments in science and engineering have advanced the fabrication techniques for micro/nanodevices. Among them, the atomic force microscope (AFM) has already been used for nanomachining and nanofabrication such as nanolithography, nanowriting and nanopatterning. This paper describes the development and validation of computational models for AFM-based nanomachining (nanoindentation and nanoscratching). The Molecular Dynamics (MD) technique is used to model and simulate mechanical indentation and scratching at the nanoscale for the case of gold. The simulation allows for the prediction of indentation forces and the friction force at the interface between an indenter and a substrate. The effect of scratching speeds on indentation force and friction coefficient is investigated. The material deformation and indentation geometry are extracted based on the final locations of the atoms, which have been displaced by the rigid tool. In addition to the modeling, an AFM was used to conduct actual indentation at the nanoscale, and provide measurements to which the MD simulation predictions can be compared. The AFM provides resolution on the nanometer (lateral) and angstrom (vertical) scales. A three-sided pyramid indenter (with a radius of curvature ∼ 25 nm) is raster scanned on top of the surface and in contact with it. It can be observed from the MD simulation results that the indentation force increases as the depth of indentation increases, but decreases as the scratching speed increases. Moreover, the friction coefficient is found to be independent of scratching speed.
Skip Nav Destination
ASME 2010 International Manufacturing Science and Engineering Conference
October 12–15, 2010
Erie, Pennsylvania, USA
Conference Sponsors:
- Manufacturing Engineering Division
ISBN:
978-0-7918-4947-7
PROCEEDINGS PAPER
AFM-Based Nanomachining for Nano-Fabrication Processes: MD Simulation and AFM Experimental Verification Available to Purchase
Rapeepan Promyoo,
Rapeepan Promyoo
Indiana University Purdue University Indianapolis, Indianapolis, IN
Search for other works by this author on:
Hazim El-Mounayri,
Hazim El-Mounayri
Indiana University Purdue University Indianapolis, Indianapolis, IN
Search for other works by this author on:
Ashlie Martini
Ashlie Martini
Purdue University, West Lafayette, IN
Search for other works by this author on:
Rapeepan Promyoo
Indiana University Purdue University Indianapolis, Indianapolis, IN
Hazim El-Mounayri
Indiana University Purdue University Indianapolis, Indianapolis, IN
Ashlie Martini
Purdue University, West Lafayette, IN
Paper No:
MSEC2010-34115, pp. 405-414; 10 pages
Published Online:
April 11, 2011
Citation
Promyoo, R, El-Mounayri, H, & Martini, A. "AFM-Based Nanomachining for Nano-Fabrication Processes: MD Simulation and AFM Experimental Verification." Proceedings of the ASME 2010 International Manufacturing Science and Engineering Conference. ASME 2010 International Manufacturing Science and Engineering Conference, Volume 2. Erie, Pennsylvania, USA. October 12–15, 2010. pp. 405-414. ASME. https://doi.org/10.1115/MSEC2010-34115
Download citation file:
12
Views
Related Proceedings Papers
Related Articles
Ordered Au Nanodisk and Nanohole Arrays: Fabrication and Applications
J. Nanotechnol. Eng. Med (August,2010)
Mechanical Properties and Strain Transfer Behavior of Molybdenum Ditelluride (MoTe 2 ) Thin Films
J. Eng. Mater. Technol (January,2022)
Adhesion and Interface Properties of Polydopamine and Polytetrafluoroethylene Thin Films
J. Appl. Mech (December,2020)
Related Chapters
Data Tabulations
Structural Shear Joints: Analyses, Properties and Design for Repeat Loading
Effect of Temperature and Irradiation on the Hardness of δ-Zr Hydride
Zirconium in the Nuclear Industry: 20th International Symposium
Part III Some Practical Advice
The Elements of Mechanical Design