In order to automate machining operations, it is necessary to develop robust tool condition monitoring techniques. In this paper, a tool monitoring strategy for round whisker-reinforced ceramic end milling tools is presented based on the Fourier transform and statistical analysis of the vibrations of the tool during the machining operations. Using a low-cost tri-axial piezoelectric accelerometer, the presented algorithm demonstrates the ability to accurately monitor the condition of the tools as the wear increases during linear milling operations. One benefit of using accelerometer signals to monitor the cutting process is that the sensor does not limit the machines capabilities, as a workpiece mounted dynamometer does. To demonstrate capabilities of the technique for round coated and uncoated ceramic tooling, six tool wear life tests were conducted under various conditions. The indirect method discussed herein successfully tracks the tool’s wear, even with the occurrence of minor chipping, and is shown to be sensitive enough to provide sufficient time to replace the insert prior to damage of the machine tool, cutter, and/or workpiece.

This content is only available via PDF.
You do not currently have access to this content.