Face milling tests on AISI 1045 steel were performed to study the flank wear of multilayered coated carbide tools. The cutting tools were dual (TiN/TiAlN) and triple (TiN/Al2O3/TiCN) layered, coated carbide inserts processed by PVD and CVD respectively. As expected, the depth of cut (DOC) did not play an important role on the development of flank wear while the cutting speed had a significant role in the development of flank wear. Using confocal laser scanning microscopy (CLSM) and wavelet transform, the flank wear evolution was analyzed and abrasive wear was found to be a dominant tool wear mechanism. Adhesion of the work material was also observed after the carbide substrate was exposed. Edge chipping and micro-fracture were additional tool failure modes. After comparing the performance of the two inserts, we concluded that the dual layer coating was superior to the triple layer coating under various cutting conditions mainly due to the benefit coming from the coating processes themselves. It was claimed that the superior performance of the multilayer coating came from preventing the gross crack-induced removal of coating materials by propagating the fracture along the coating interfaces. However, no such observations were found in our milling experiment. Therefore, the hardness of the coating materials is the most important criteria for the development of flank wear.
Skip Nav Destination
ASME 2010 International Manufacturing Science and Engineering Conference
October 12–15, 2010
Erie, Pennsylvania, USA
Conference Sponsors:
- Manufacturing Engineering Division
ISBN:
978-0-7918-4946-0
PROCEEDINGS PAPER
Tool Wear Analysis on Multi-Layered Coated Carbide Tools in Face Milling of AISI 1045 Steel
Kyung-Hee Park,
Kyung-Hee Park
Michigan State University, East Lansing, MI
Search for other works by this author on:
Patrick Y. Kwon
Patrick Y. Kwon
Michigan State University, East Lansing, MI
Search for other works by this author on:
Kyung-Hee Park
Michigan State University, East Lansing, MI
Patrick Y. Kwon
Michigan State University, East Lansing, MI
Paper No:
MSEC2010-34066, pp. 363-370; 8 pages
Published Online:
April 11, 2011
Citation
Park, K, & Kwon, PY. "Tool Wear Analysis on Multi-Layered Coated Carbide Tools in Face Milling of AISI 1045 Steel." Proceedings of the ASME 2010 International Manufacturing Science and Engineering Conference. ASME 2010 International Manufacturing Science and Engineering Conference, Volume 1. Erie, Pennsylvania, USA. October 12–15, 2010. pp. 363-370. ASME. https://doi.org/10.1115/MSEC2010-34066
Download citation file:
8
Views
Related Proceedings Papers
Related Articles
Directionally Independent Failure Prediction of End-Milling Tools During Pocketing Maneuvers
J. Manuf. Sci. Eng (August,2007)
A Geometrical Simulation System of Ball End Finish Milling Process and Its Application for the Prediction of Surface Micro Features
J. Manuf. Sci. Eng (February,2006)
Related Chapters
Cutting Performance and Wear Mechanism of Cutting Tool in Milling of High Strength Steel 34CrNiMo6
Proceedings of the 2010 International Conference on Mechanical, Industrial, and Manufacturing Technologies (MIMT 2010)
Surface Analysis and Tools
Tribology of Mechanical Systems: A Guide to Present and Future Technologies
Effectiveness of Minimum Quantity Lubrication (MQL) for Different Work Materials When Turning by Uncoated Carbide (SNMM and SNMG) Inserts
Proceedings of the 2010 International Conference on Mechanical, Industrial, and Manufacturing Technologies (MIMT 2010)