Friction Stir Welding (FSW) is a relatively new joining technique and has many applications. In FSW, heat generated due to friction between FSW tool and work-piece material softens the material and allows the materials in work-pieces to be stirred and joined together. FSW allows the work-pieces to be joined without reaching the melting point of the material, thus resulting in better welds. However, a large amount of mechanical energy has to be consumed for FSW of high-strength, difficult-to-weld metals such as titanium alloys. Hence, new FSW methods should be investigated to reduce the required energy. In this study, an innovative electrically-enhanced friction stir welding (EEFSW) has been developed. Electric current is passed in welding coupons of Aluminum 6061 plates and its effect on welding process and welds are examined. The results indicate that, with the aid of electric current, improvement in welding speed and reduction in energy consumption is obtainable, which enhances the productivity and widens the range of applications of FSW. Weld properties are found to be affected by the introduced current as well.

This content is only available via PDF.
You do not currently have access to this content.