Cryogenic treatment is a heat treatment process in which the specimen is subjected to an extremely low temperature of the order of −300° F and below, to cause beneficial changes in the material properties. The advantages of cryogenic treatment include relieved residual stresses, and better electrical properties. Electro discharge machining (EDM) is a well known nontraditional machining process in which electrical energy is converted to thermal energy to remove material by melting and evaporation from electrically conductive materials. The process performance of EDM is affected by several factors including the material properties. In this study, the effect of cryogenic treatment on the performance of EDM is investigated experimentally. Copper tool electrodes were subjected to two different treatment methods, namely cold treatment (around −150° F) and deep cryogenic treatment (around −300° F). Using these electrodes, experiments were conducted to study the effect of various process parameters. Significant improvement in material removal rate was observed for EDM with cryogenically treated tools. However, their effect on tool wear is only marginal.

This content is only available via PDF.
You do not currently have access to this content.