There has been much research into monitoring techniques for mechanical systems to ensure stable production levels in modern industries. This is particularly true for the diagnostic monitoring of rotary machinery, because faults in this type of equipment appear frequently and quickly cause severe problems. Such diagnostic methods are often based on the analysis of vibration signals because they are directly related to physical faults. Even though the magnitude of vibration signals depends on the measurement position, the effect of measurement position is generally not considered. This paper describes an investigation of the effect of the measurement position on the fault features in vibration signals. The signals for normal and broken bevel gears were measured at the base, gearbox, and bevel gear, simultaneously, of a machine fault simulator (MFS). These vibration signals were compared to each other and used to estimate the classification efficiency of a diagnostic method using wavelet packet transform. From this experiment, the fault features are more prominently in the vibration signal from the measurement position of the bevel gear than from the base and gearbox. The results of this analysis will assist in selecting the appropriate measurement position in real industrial applications and precision diagnostics.

This content is only available via PDF.
You do not currently have access to this content.