The purpose of applying a laser beam in the micro-laser assisted machining (μ-LAM) process is to preferentially heat and thermally soften the surface layer of the work piece material (4H-SiC) at the interface with a diamond cutting tool. In the μ-LAM process the laser beam (1480 nm and 400 mW) is delivered to the work piece material through a transparent diamond cutting tool. Thus the cutting tool and the laser system are integrated and coupled; in contrast with other LAM processes where the cutting tool and laser are separate and distinct systems. Scratches were made on a 4H-SiC substrate using the μ-LAM process. The characteristics of the scratches, such as depth and width, are principally a function of the cutting tool geometry, applied forces, cutting speed, and laser heating. White light interferometer microscopy and Atomic Force Microscopy (AFM) techniques were used to measure the geometry (depth and width) of the scratches. Force analysis was carried out to evaluate the laser heating effect on the cutting forces and the measured depth of cut. The force analysis included an evaluation of the mechanical work, specific energy, and understanding the effect of laser heating on the cutting process. The scratch tests performed on 4H-SiC with the laser heating showed that there is a greater than 50% reduction in relative calculated hardness values of work piece material, resulting in a significant reduction in cutting forces.

This content is only available via PDF.
You do not currently have access to this content.