The steady state motion of a machine-tool is numerically predicted with interaction of the chip/tool friction boundary. The chip/tool friction boundary is modeled via a discontinuous systems theory in effort to validate the passage of motion through such a boundary. The mechanical analogy of the machine-tool is shown and the continuous systems of such a model are governed by a linear two degree of freedom set of differential equations. The domains describing the span of the continuous systems are defined such that the discontinuous systems theory can be applied to this machine-tool analogy. Specifically, the numerical prediction of eccentricity amplitude and frequency attribute the chip seizure motion to the onset or route to unstable interrupted cutting.

This content is only available via PDF.
You do not currently have access to this content.